



# **Physics by: VAIBHAV PANDIYA**

# WORK BOOK LECTURE 2 OF DIMENSIONS

### **LIST OF PHYSICAL QUANTITIES**

### **List 1: Mechanics**

### Note!

The object of this list is to have the basic formula/relation so that you can have comfort when you encounter some new physical quantity while solving assignment problems or past years JEE/NEET Questions

| S<br>No | Physical Quantity                       | Formula                                 | Dimensional<br>Formula                                        | S.I Unit          |
|---------|-----------------------------------------|-----------------------------------------|---------------------------------------------------------------|-------------------|
| 1.      | Area (A)                                | Length x Breadth                        | $[\mathbf{M}^0\mathbf{L}^2\mathbf{T}^0]$                      | m <sup>2</sup>    |
| 2.      | Volume (V)                              | Length x Breadth x Height               | $[\mathbf{M}^0\mathbf{L}^3\mathbf{T}^0]$                      | $m^3$             |
| 3.      | Density (d)                             | Mass / Volume                           | $[ML^{-3}T^0]$                                                | kgm <sup>-3</sup> |
| 4.      | Speed                                   | Distance / Time                         | $[\mathbf{M}^0\mathbf{L}\mathbf{T}^{\text{-}1}]$              | ms <sup>-1</sup>  |
| 5.      | Velocity (v)                            | Displacement / Time                     | $[\mathbf{M}^0\mathbf{L}\mathbf{T}^{\text{-}1}]$              | ms <sup>-1</sup>  |
| 6.      | Acceleration (a)                        | Change in velocity / Time               | $[M^0LT^{-2}]$                                                | ms <sup>-2</sup>  |
| 7.      | Acceleration due to gravity (g)         | Change in velocity / Time               | $[\mathrm{M}^0\mathrm{LT}^{-2}]$                              | ms <sup>-2</sup>  |
| 8.      | Specific<br>gravity/Relative<br>Density | Density of body/density of water at 4°C | No dimensions [M <sup>0</sup> L <sup>0</sup> T <sup>0</sup> ] | No unit           |
| 9.      | Plane angle                             | Dimensionless                           | $[M^0L^0T^{-0}]$                                              | radian (rad)      |





# Physics by: VAIBHAV PANDIYA

| 10. | Solid angle                                | Dimensionless                                                       | $[\mathbf{M}^{0}\mathbf{L}^{0}\mathbf{T}^{-0}]$ | steradian (sr)                  |
|-----|--------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------|
| 11. | Linear momentum (p)                        | Mass x Velocity                                                     | [MLT <sup>-1</sup> ]                            | kgms <sup>-1</sup>              |
| 12. | Force (F)                                  | Mass x Acceleration                                                 | [MLT <sup>-2</sup> ]                            | newton (N)                      |
| 13. | Work (W)                                   | Force x Distance                                                    | $[ML^2T^{-2}]$                                  | joule (J)                       |
| 14. | Kinetic Energy (K)                         | $\frac{1}{2}$ (mass) (speed) <sup>2</sup>                           | $[ML^2T^{-2}]$                                  | joule (J)                       |
| 15. | Potential Energy (U)                       | U = mgh $M = mass, g = acceleration due to gravity,$ $h = height$   | $[\mathrm{ML}^2\mathrm{T}^{-2}]$                | joule (J)                       |
| 16. | Heat / Any kind of energy/ Radiation       | Energy                                                              | $[\mathrm{ML}^2\mathrm{T}^{-2}]$                | joule (J)                       |
| 17. | Impulse (J)                                | Force x Time                                                        | [MLT <sup>-1</sup> ]                            | Ns                              |
| 18. | Action                                     | Energy x Time                                                       | $[ML^2T^{-1}]$                                  | Js                              |
| 19. | Pressure (P)                               | Force / Area                                                        | [ML <sup>-1</sup> T <sup>-2</sup> ]             | Nm <sup>-2</sup><br>pascal (Pa) |
| 20. | Power (P)                                  | Work / Time                                                         | $[ML^2T^{-3}]$                                  | W                               |
| 21. | Intensity (I)                              | Power (P)/ Area (A)                                                 | $[ML^0T^{-3}]$                                  | $W/m^2$                         |
| 22. | Co-efficient of friction                   | Force<br>Force                                                      | $[M^0L^0T^{-0}]$                                | No unit                         |
| 23. | Co-efficient of restitution                | final speed<br>initial speed                                        | $[\mathbf{M}^0\mathbf{L}^0\mathbf{T}^0]$        | No unit                         |
| 24. | Co-efficient of viscosity (n)              | $F = 6\pi nrv$ $F = Force$ $n = viscosity$ $r = radius$ $v = speed$ | [ML <sup>-1</sup> T <sup>-1</sup> ]             | pascal second<br>(Pa-s)         |
| 25. | Universal<br>gravitational<br>constant (G) | $F = \frac{Gm_1m_2}{r^2}$ $F = force$ $m_1 \text{ and } m_2 = mass$ | $[M^{-1}L^3T^{-2}]$                             | $\mathrm{Nm}^2\mathrm{kg}^{-2}$ |





# **Physics by: VAIBHAV PANDIYA**

|     |                                                                                                | r = distance                             |                                                               |                                    |
|-----|------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 26. | Gravitational<br>Potential                                                                     | Work/Mass                                | $[\mathrm{M^{o}L^{2}T^{-2}}]$                                 | J/kg                               |
| 27. | Gravitational field (g)                                                                        | Force/mass                               | [M°LT <sup>-2</sup> ]                                         | m/s <sup>2</sup>                   |
| 28. | Moment of inertia (I)                                                                          | Mass x (distance) <sup>2</sup>           | $[ML^2T^0]$                                                   | kgm <sup>2</sup>                   |
| 29. | Torque (τ)/Moment of force/ couple                                                             | Force x distance                         | $[ML^2T^{-2}]$                                                | Nm                                 |
| 30. | Surface tension (T)                                                                            | Force / Length                           | $[ML^0T^{-2}]$                                                | Nm <sup>-1</sup>                   |
| 31. | Surface energy (E)                                                                             | Energy / unit area                       | $[\mathrm{ML^0T^{-2}}]$                                       | Nm <sup>-1</sup>                   |
| 32. | Force constant (x)                                                                             | Force / Displacement                     | $[\mathbf{M}^{1}\mathbf{L}^{0}\mathbf{T}^{-2}]$               | Nm <sup>-1</sup>                   |
| 33. | Thrust (F)                                                                                     | Force                                    | [MLT <sup>-2</sup> ]                                          | N                                  |
| 34. | Tension (T)                                                                                    | Force                                    | [MLT <sup>-2</sup> ]                                          | N                                  |
| 35. | Stress                                                                                         | Force / Area                             | [ML <sup>-1</sup> T <sup>-2</sup> ]                           | Nm <sup>-2</sup> or pascal<br>(Pa) |
| 36. | Strain                                                                                         | Change in dimension / Original dimension | No dimensions [M <sup>0</sup> L <sup>0</sup> T <sup>0</sup> ] | No unit                            |
| 37. | Modulus of Elasticity (E)  • Young's modulus (Y)  • Bulk's modulus (B)  • Rigidity Modulus (G) | Stress / strain                          | [ML <sup>-1</sup> T <sup>-2</sup> ]                           | Nm <sup>-2</sup>                   |
| 38. | Radius of gyration (k)                                                                         | Distance                                 | [M <sup>0</sup> LT <sup>0</sup> ]                             | m                                  |
| 39. | Angular impulse                                                                                | Torque X time                            | $[ML^2T^{\text{-}1}]$                                         | Js (joule second)                  |







# Physics by: VAIBHAV PANDIYA

| 40. | Angular velocity( ω )                          | Angle / Time                                 | $[\mathbf{M}^0\mathbf{L}^0\mathbf{T}^{-1}]$     | rad s <sup>-1</sup>              |
|-----|------------------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------------------|
| 41. | Angular acceleration( $\alpha$ )               | Angular velocity / Time                      | $[M^0L^0T^{\text{-}2}]$                         | rad s <sup>-2</sup>              |
| 42. | Angular momentum (J) or (l)                    | Moment of inertia x Angular velocity         | $[\mathrm{ML}^2\mathrm{T}^{-1}]$                | kgm <sup>2</sup> s <sup>-1</sup> |
| 43. | Velocity gradient $\left(\frac{dv}{dx}\right)$ | Velocity / Distance                          | $[M^0L^0T^{-1}]$                                | s <sup>-1</sup>                  |
| 44. | Rate flow                                      | Volume / Time                                | $[\mathbf{M}^0\mathbf{L}^3\mathbf{T}^{-1}]$     | $m^3s^{-1}$                      |
| 45. | Wavelength(λ)                                  | Length of a wavelet                          | $[M^0LT^0]$                                     | m                                |
| 46. | Frequency( $\nu$ )                             | Number of vibrations/second or 1/time period | $[M^0L^0T^{\text{-}1}]$                         | Hz or s <sup>-1</sup>            |
| 47. | Angular frequency (ω)                          | 2π x frequency                               | $[M^0L^0T^{\text{-}1}]$                         |                                  |
| 48. | Planck's constant (h)                          | Energy / Frequency                           | $[\mathrm{ML}^2\mathrm{T}^{\text{-}1}]$         | Js                               |
| 49. | Buoyant force                                  | Force                                        | $[\mathbf{M}^{1}\mathbf{L}^{1}\mathbf{T}^{-2}]$ | N                                |
| 50. | Pressure gradient                              | Pressure / Distance                          | $[M^1L^{-2}T^{-2}]$                             | Nm <sup>-3</sup>                 |
| 51. | Pressure energy                                | Pressure x Volume                            | $[\mathrm{ML^2T^{-2}}]$                         | J                                |

# SRISHTI





## Physics by: VAIBHAV PANDIYA

### **WORK BOOK**

### **LECTURE 2 OF DIMENSIONS**

#### **QUESTIONS**

- 1. Which of the following have the same dimensions?
  - (a) Pressure and stress
  - (b) Work and torque
  - (c) Angle and strain
  - (d) Energy and surface energy?
- 2. A dimensionless quantity is always unit less. (True/False)?
- 3. Name two quantities which are unit less as well as dimensionless.
- 4. Maximum number of dimensions a quantity can have is \_\_\_\_\_
- 5. If two physical quantities have the same dimensional formulae then they must be identical in physical nature. (True/False)
- 6. A base quantity can never have non-zero dimensions in other base quantities. (True/False)?
- 7. A physical quantity must have non-zero dimensions in at least one of the base quantities. (True/False).





# Physics by: VAIBHAV PANDIYA

### **ANSWERS**

- 1. (a), (b), (c)
- 2. False
- 3. Many are there, like angle and strain
- 4. 7 dimensions
- 5. False
- 6. True
- 7. False

